Introduction
Access to legal information remains a significant barrier for citizens worldwide. Complex legislation, dense legal language, and scattered resources make it difficult for ordinary people to understand their rights and obligations. lawla was built to solve this problem through production-grade AI engineering.
This technical paper documents our engineering approach, architectural decisions, and production lessons from building a legal AI assistant launching in January 2026.
Problem Statement
Our research identified three core challenges in legal information accessibility:
- Complexity: Legal documents use specialized language that's difficult for non-lawyers to parse
- Context: Understanding one piece of legislation often requires knowledge of related laws and precedents
- Scale: The volume of legal information makes manual research time-consuming and incomplete
We engineered lawla to address each of these challenges through fine-tuned LLMs, retrieval-augmented generation, and automated knowledge graph construction.
Technical Architecture
lawla's production architecture consists of three primary components:
1. Fine-Tuned LLM Pipeline
At the core of lawla is a custom fine-tuned Llama 3 70B model trained on legal corpora. We started with the base model and applied domain-specific fine-tuning using:
- Over 500,000 legal documents from public databases
- Parliamentary proceedings and legislative debates
- Court rulings and legal commentary
- Plain-language legal explainers for training pairs
# Example: Fine-tuning configuration
model_config = {
"base_model": "llama-3-70b",
"training_data": "legal_corpus_v2",
"epochs": 5,
"learning_rate": 2e-5,
"batch_size": 16,
"lora_rank": 64
}
2. Knowledge Graph
To provide contextual understanding, we built a comprehensive legal knowledge graph connecting related concepts, cross-referencing legislation, and tracking amendments over time. This graph enables Lawla to:
- Identify relevant related legislation when explaining a specific law
- Track how laws have changed and evolved
- Understand hierarchical relationships between different legal frameworks
3. Retrieval-Augmented Generation (RAG)
Rather than relying solely on parametric knowledge, lawla uses RAG to ground all responses in actual legal texts. Vector search (Pinecone) retrieves relevant passages, which are then passed to the LLM for synthesis. This architecture significantly reduces hallucination and ensures all claims are citation-backed.
"RAG plus fine-tuning gave us production-grade accuracy: 96.3% fact-checking score in beta testing. The combination is essential—fine-tuning alone had too many hallucinations, RAG alone lacked legal fluency." — REGNIFY Engineering Team
Training Methodology
Our training approach focused on three key objectives:
Accuracy First
Legal information must be precise. We implemented multiple validation layers:
- Automated fact-checking against source documents
- Human review by legal professionals during training
- Citation requirement for all legal claims
- Confidence scoring for model outputs
Plain Language Output
We trained the model to translate legal jargon into accessible language without losing accuracy. This involved creating training pairs where complex legal text was paired with plain-language explanations verified by legal experts.
Contextual Awareness
lawla needed to understand that legal questions often require context. We trained the model to ask clarifying questions when necessary and track jurisdiction, effective dates, and user context through the conversation.
Early versions attempted to answer every question immediately. Beta testing showed that asking 1-2 clarifying questions improved both user trust and response accuracy. We retrained with conversational data to make the system more interactive rather than purely answer-driven.
Evaluation & Testing
We developed a comprehensive testing framework including:
| Metric | Target | Achieved |
|---|---|---|
| Factual Accuracy | >95% | 96.3% |
| Citation Quality | >90% | 93.1% |
| User Comprehension | >85% | 88.7% |
| Response Time | <3s | 2.1s avg |
Challenges & Solutions
Challenge 1: Hallucination
Early models occasionally generated plausible-sounding but incorrect legal information. We addressed this through:
- Implementing strict RAG with source citation requirements
- Adding confidence thresholds below which the model admits uncertainty
- Regular validation against authoritative legal databases
Challenge 2: Jurisdictional Complexity
Legal systems vary significantly by jurisdiction. Our solution involved:
- Explicit jurisdiction detection and tracking throughout conversations
- Separate training for different legal systems
- Clear disclaimers when information crosses jurisdictional boundaries
Challenge 3: Keeping Content Current
Laws change constantly. We built an automated pipeline to:
- Monitor legislative databases for updates
- Automatically update the knowledge graph
- Flag outdated information in the model's responses
- Schedule periodic model retraining with new legal developments
Results & Impact
Beta testing with 1,000 users across diverse demographics showed:
- 92% found Lawla's explanations easier to understand than reading legislation directly
- 87% reported increased confidence in understanding their legal rights
- Average time to answer a legal question reduced from 45 minutes (manual research) to 3 minutes (with Lawla)
Future Directions
Post-launch, we plan to expand Lawla's capabilities in several directions:
- Multilingual Support: Expanding beyond English to serve diverse populations
- Document Analysis: Allowing users to upload contracts and legal documents for AI analysis
- Legal Research Tools: Building features specifically for legal professionals
- Case Law Integration: Incorporating court decisions and precedents into responses
Conclusion
Building Lawla required balancing multiple competing priorities: accuracy versus accessibility, comprehensiveness versus simplicity, automation versus human oversight. Through careful architectural decisions, rigorous testing, and continuous iteration based on user feedback, we created a system that makes legal information genuinely accessible.
As we approach our January 2026 production launch, we're focused on final optimizations: response latency, cost per query, and edge case handling. lawla represents our first production AI product—built to scale from day one.
This technical paper represents the work of the REGNIFY engineering team. For technical questions, collaboration opportunities, or early access inquiries, contact us at [email protected]